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Project Integration Architecture:
Inter-Application Propagation of Information

William Henry Jones
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: A principal goal of the Project Integration Architecture (PIA) is to facilitate the meaningful inter-application
transfer of application-value-added information. Such exchanging applications may be largely unrelated to each other
except through their applicability to an overall project; however, the PIA effort recognizes as fundamental the need to
make such applications cooperate despite wide disparaties either in the fidelity of the analyses carried out, or even the
disciplines of the analysis. This paper discusses the approach and techniques applied and anticipated by the PIA project
in treating this need.

1 Introduction

Any significant engineering project is inevitably the subject
of multiple analyses of various parts of the overall whole.
For example, the design of a new air vehicle must consider
all manner of things from the external aerodynamics expe-
rienced in the extremes of its flight envelope to the heat ab-
sorbtion characteristics and combustion performance of its
fuel. Seldom are all the engineering concerns of a project
captured in a single analysis. Indeed, the normal experi-
ence is that each analysis is narrowly focused to a single
discipline and to a sometimes-ill-defined level of fidelity.

Increasingly, these analyses are captured as computer pro-
grams of one form or another. Predictably, the programs
display a nearly limitless variety of forms for their input,
output, and operational expectations, as well as any other
characteristic that might be meaningfully defined. A foun-
dational goal of the Project Integration Architecture (PIA)
was to provide a single, common, object-oriented wrapping
layer that could buffer this endless diversity of formulation
and make all things appear the same in some useful way.
It is felt that this goal has been reasonably achieved and
demonstrated in a C++ language implementation. The ar-
chitectural result is discussed in a previous paper [1].

The PIA project recognized, though, that such disparate
analyses were seldom applied to an engineering project in
isolation. For example, an extremely effective fuel in terms
of combustion performance probably affects the structural
analysis of the vehicle in that its containing tank structure
may be smaller and lighter, or an extremely low density fuel
may affect the external aerodynamic analysis by requiring

the accommodation of greater bulk.

Traditionally, such analytical couplings have been handled
in a manual way, often simply through human-to-human
interactions, and have resulted in overall engineering anal-
yses that were less sophisticated than might have been de-
sired. To contribute in this area, the PIA effort has al-
ways intended to build upon the common foundational-
architecture base to facilitate the automated flow of mean-
ingful information between such applications.

A key element in the expectation that this goal could be
achieved was the perception that disparate analyses could
meaningfully transmit information content at some basic,
physical level. For example, the expectation was that two
computational fluid mechanics codes, despite very different
formulations of the flow field problem, would, neverthe-
less, be able to communicate meaningfully through basic
statements supplying things such as total temperature, total
pressure, velocity vector, and the like, all given through-
out some interfacing volume. That expectation comes from
the realization that, were two engineers sheparding these
disparate, yet cooperating, analyses for a project, such is
the nature of the communications that would be had. Thus,
a part of the PIA contribution is to provide a place where
such basic transfers can be encoded and automated.

Another aspect of traditional coordination of cooperating
engineering analyses is that, at some small but persistent
statistical rate, the product configuration being analysed
gets out of synchronization. The aeroperformance of the
thin wing is analysed and combined with the fuel capacity
analysis of the thick wing, resulting in a winning, if unman-
ufacturable, design. The PIA effort solves this coordination
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problem, too. The solution is, of course, merely a matter of
bookkeeping, but such bookkeeping is a matter proven to
be best left to the ruthless stupidity of computing machin-
ery.

Finally, it remains to be said that the PIA effort does not
solve the propagation of information problem at the se-
mantic level, but only at the generic, bookkeeping level.
Semansis is a quality that is void until the architecture is
applied to an application. It is only as an application enters
the PIA world through the efforts of the person develop-
ing the application wrapper that a survey of the informa-
tion likely to be available may be made and instructions
encoded into that wrapper which make reasonable use of
those elements of information that, in a semantic manner,
make ‘sense’.

2 The Solution

As with many problems in computing, clever (or, for the
more modest among us, fortuitous) arrangement of the el-
ements renders the actual solution so simple as to leave
the observer questioning why the problem was ever posed.
To a considerable degree, this is the situation found in the
inter-application propagation of information within the PIA
environment. Nevertheless, an effort will be made here to
make matters seem complicated and, consequently, impres-
sive.

2.1 The Application Graph

The first challenge to be confronted in the propagation
of information between applications is identifying to each
such cooperating application just exactly which other ap-
plications it might obtain information from and which ap-
plications it should distribute its own information to. In
treating this issue, the PIA project introduces a condition
considered to be life-like, although perhaps not without ex-
ception: that composite engineering analyses have a defin-
able flow of information which obeys a concept of causal-
ity.

For example, consider a simple case of such information
flow in which analysis A provides the information which
analysis B needs to go forward, which in turn gives rise to
the information for analyses C and D which can go forward
independently, each producing information which is finally
assessed by analysis E. That final assessment by analysis E
may indicate that the proposed design is unsatisfactory and
give rise to an adjustment which then starts the analysis

flow again.

This causality assumption is a key constraint and allows
the PIA project to arrange cooperating applications as a di-
rected, acyclic graph. This is easily done since PacAppl
application objects inherit the characteristics of directed
graph nodes from the PObjDgn class layer.

Such a directed graph of cooperating applications is repre-
sented (for the present, rather optimistically) by Figure 2.1,
a graph of applications which were, themselves, recently
used in the analysis of the Rocket Based Combined Cycle
propulsion system proposal being developed at the Glenn
Research Center. Each labeled box of the figure represents
another PIA-wrapped application; CAPRI cross-vendor ac-
cess to CAD geometry data, NASTRAN structural analy-
sis, trajectory analysis, and so on. In this engineering flow,
a selected geometry (as revealed by CAPRI) is the ultimate
driver, the initial node of the graph. Geometry then directly
feeds to APAS, an aeropanel loads code, GASP, a more
refined computational fluids analysis, and NASTRAN, a
reliable analysis of structural performance. As the figure
shows, information is to flow in expected patterns. Note
that the GASP fluid analysis relies not only upon the ba-
sic geometry received from CAPRI, but also on the lumped
aerofluid analysis of APAS.

The bottom of the figure shows an even more optimistic el-
ement: a conflict resolver and system optimizer. Here, the
aggregate of engineering analysis is to be brought together,
assessed for merit, and, potentially, result in a design alter-
ation represented by the sweeping curve back to the geom-
etry element at the top of the graph. It must be emphasized
that, at the time of the writing of this paper, this final assess-
ment element is only a projection that such a thing can be
done. At the moment, this role is filled by the engineer, or
more aptly, by the team of engineers effecting the project.
Nevertheless, it is important to note that the PIA project has
a place for such a thing to go.

It is also important to note that this sweeping curve is
not intended to be an actual graph edge making the di-
rected graph cyclic. Instead, it is expected that the re-
solver/optimizer application will be built with knowledge
of the overall problem (often expected to be a problem
driven by geometry) and that the feedback operation will
be in the manner of a user interaction causing a new con-
figuration of the problem rather than as a cyclic propagation
of an existing configuration of the problem.

Information propagation begins in the PIA scheme in re-
sponse to some (customarily) external event, usually de-
livered in the context of the initial node of the application
graph. That responding application assures that its infor-
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Figure 2.1: A Graph of Cooperating Applications

mation state is as complete as possible, and then re-delivers
the propagation event to each of its immediate successor
applications. Each of those applications, in turn, assures
that its own information state is as complete as possible (to
be discussed further in a moment) and then re-delivers the
propagation event to its own immediate successor applica-
tions. This process ripples through the application graph
until it reaches all of the terminal nodes of that graph.

(As mentioned above, the application graph is expected to
be acyclic. The design revision anticipated in Figure 2.1
by the conflict resolver block and its sweeping curve back
to the initial node of the graph is expected to be a special
operation of that ‘application’ rather than a simple infor-
mation propagation act, even though the propagation code
may be cleverly reused.)

Because the application graph is not constrained to be a
simple n-ary tree (that is, because a particular application,
for instance the GASP computational fluids analysis in Fig-
ure 2.1, may have more than one primary source of input in-
formation), assessing the completeness of an application’s
information state includes waiting for all of the immediate
predecessors of an application to complete their part of the
propagation act and transmit the propagation event on to
the receiving application.

Also, the PIA implementation allows for the possibility
that, while the immediate predecessors of a given applica-
tion may represent the bulk of the information flow, they

cannot be proved to represent the entirety of that flow.
Thus, the implementation examines not only the immediate
predecessor application transmitting the propagation event,
but all the extended predecessor applications of that im-
mediate predecessor application, visiting that graph set in
depth-first order for reasons that will be explained a little
later. (Here, the extended predecessors of a graph node are
considered to be all the nodes reachable by any sequence
of backward-flowing predecessor edges originating in the
subject node. Also, depth-first order is, simply put, visiting
the node most remote (or deepest) from the initial node of
a graph first, then the next most remote nodes, etc.)

Finally, the PIA implementation recognizes that, after all
possible information sources have been harvested, a com-
putational operation will typically complete an applica-
tion’s information state by producing outputs from the in-
put parameter set. This operation is, of course, application
specific; however, the PIA design assigns the operation a
place within the application object and always invokes that
functionality between the completion of source examina-
tion and the further propagation of information to successor
applications.

Traversals of the extended predecessor set of the immediate
predecessors of a node of a graph will produce redundant
examinations of some nodes if multiple immediate prede-
cessors to the node exist. (At a minimum, the initial node
will be examined once for each immediate predecessor.)
In many situations, redundant examinations will be with-
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out useful result and, thus, the implementation provides a
facility to prevent them. This facility, though, is optional
because there may also exist cases in which particular in-
formation may not be assimilated until other coordinated
information has been obtained.

2.2 The Data Configuration Graph

Having considered the act of information propagation at the
level of the application graph, the next step is to consider
the act as it operates within the context of source and des-
tination applications. As discussed in the cited paper [1],
PIA applications do not contain a single input/output state
vector for a single configuration of the problem at hand, but
a multitude of such state vectors for all the problem config-
urations studied. These state vectors are held by PacCfg
parameter configuration objects which are, themselves, ar-
ranged as n-ary trees for a given application. Another key
focus of information propagation is to keep these problem
configuration trees synchronized so that mismatched anal-
yses do not occur.

Each parameter configuration object is required to have a
name unique among its siblings in the parameter configu-
ration tree. This allows the correspondence between two
such trees, as in Figure 2.2, to be established. Thus in the
figure, it is possible for code to establish that the initial pa-
rameter configuration node of the source application and
the first two subgraphs emanating from it (proceeding from
left to right) correspond to the entire configuration graph
of the receiving application. Further, by concatenating the
name of any given node with those of its ancestors up to
the initial node of the tree, a unique path can be identified
which may then be applied to another tree (as far as that
tree exists) to identify the corresponding node.

This capability is employed by the implementation in re-
sponse to a propagation operation (represented somewhat
artistically by the sweeping curve of Figure 2.3) when the
identified source configuration is not of the receiving appli-
cation’s own parameter configuration tree. Assuming that
the cited parameter configuration node of the source appli-
cation does not already have a corresponding node in the re-
ceiver’s tree, rigid correspondences between the two trees
are established and the attachment point in the receiver’s
tree is identifed. A node corresponding to the cited node
is created and attached, along with nodes corresponding
to those of any subgraph the cited node may head. The
names of the source parameter configuration nodes are used
to name the created, corresponding receiver nodes so that
project configuration sychronization is maintained.

Note that the information propagation process will refuse
to go forward if the necessary correspondences between
parameter configuration trees cannot be established. Propa-
gation processes cannot proceed between applications with
disparate parameter configuration trees, at least when those
disparaties exist in the path between the initial node and the
attachment point. Thus, pre-existing, independent analy-
ses cannot be connected together helter-skelter even though
two nodes correspond through their names while their an-
cestral paths differ. The intent of this is, of course, to estab-
lish some modest assurance that the propagation of infor-
mation from application to application is, in some project
configuration sense, reasonable.

Another intention of this propagation not by single nodes of
the parameter configuration tree, but by (potentially) sub-
graphs of that tree is to allow and automate the processing
of entire design sets. Such sets might provide for the sys-
tematic variation of parameters through technologies such
as design of experiments, probablist theories, or even by-
guess-and-by-golly speculation. Data configuration tree
policies (discussed in the cited paper) provide for the intra-
tree replication of subgraphs for just such purposes and
the information propagation implementation continues that
support throughout the application graph.

2.3 The Data Configuration Node

Setting aside the complexities of propagating entire sub-
graphs of information, it is now time to consider the mech-
anisms of propagating information from a single source
parameter configuration node to a single destination pa-
rameter configuration node. For each such configuration
pair, there are three distinct points or phases at which
information may transfer: a preparatory configuration-
to-configuration operation, a parameter-by-parameter op-
eration performed for each parameter identified by the
source parameter configuration, and a postprocessing
configuration-to-configuration operation.

The preparatory and concluding operations are really one
philosophically: the opportunity to operate on the whole
rather than upon the individual parts. It was supposed that
some situations would exist in which the combination of
several pieces of information would be required to synthe-
size a given parameter in the receiving application. It is to
meet such a purpose that the preparatory and concluding
operations are designed.

Unfortunately, preparatory and concluding operations (as
is the parameter-by-parameter operation, too) are entirely
semantic in nature and, thus, little constructive beyond
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declaring their existence can be done; however, one small
insight was possible. It was thought foolish to place on
these node level operations the burden of a parameter ag-
gregate scan when that was exactly the effort implemented
by the parameter-by-parameter operation. To allow the
node level operations to capitalize upon the parameter-by-
parameter effort, an operating context was defined as ex-
isting and persisting through the entire information propa-
gation operation for a given destination node. (Naturally,
the base implementation makes this context null, but de-
rived applications are entirely free to place whatever might
be needed in this conceptual slot.) The parameter-by-
parameter operation may add to this context such param-
eters as may be appropriate to a particular synthesis. The
concluding node level operation may then act upon the pa-
rameter harvests that have occurred.

Because this destination-node-level propagation context
exists beyond the scope of a particular node-to-node effort,
it may harvest parameters from more than one source appli-
cation. Indeed, the context is free to be a persistent part of
the destination parameter configuration and exist through
the entire parameter propagation cycle of an application
graph, or even beyond that.

The parameter-by-parameter operation is, on its surface, al-
most self-explanatory. Once a source-destination parame-
ter configuration pair has been established (and the prepara-
tory operation accomplished), a simple iteration through
each identified parameter of the source application is per-
formed, offering the destination parameter configuration
the opportunity to examine each such parameter and ac-
quire such information as it may from it.

Naturally, things are just slightly more complex than this.
Another concept of the parameter configuration tree (de-
tailed, again, in the cited paper [1]) is the inheritance of pa-
rameters. In any given parameter configuration, there is the
need to insert only the parameters that differ it from its an-
cestral heritage. A missing but needed parameter causes an
ascent of the parameter configuration tree which is stopped
by the first configuration that actually has a copy of the
needed parameter.

Causing this parameter inheritance mechanism to work in
receiving applications after the act of propagation is of
some interest in order to preserve the benefits of the con-
cept. To do this, the code that invokes the application spe-
cific parameter-by-parameter operation has the ability to
avoid the operation if the source parameter to be examined
does not, in fact, exist in the source parameter configura-
tion. This avoidance is optional and applications that need
to look at every parameter, whether inherited or not (per-
haps to form an aggregate for later synthesis), have that

option.

2.4 The Parameter Object

With the exception of the application wrapper code, the pa-
rameter object is the most situation specific element of the
information propagation process. Despite this, two quite
general achievements are in the province of the parameter
object: the provision of a definitive statement of the seman-
tic meaning it encapsulates and the potential offering of that
information in a variety of forms convenient to common us-
ages.

The statement of semantic meaning is not, of course, a
programatic entity encapsulated within the parameter ob-
ject. Instead, the statement is implicit in the object kind.
For example, an object that reveals itself through run-time
mechanisms to be of the kind ‘parameter, scalar, double,
Mach number, far-field’ implicitly reveals its semantic na-
ture to be just that: a far-field Mach number rendered as
a scalar double value. This is a small, simple, but never-
theless crucial contribution to the process for it allows con-
suming propagation code to determine exactly the semantic
nature of the information it is looking at.

It is anticipated that a fully-matured PIA object space will
have a multitude (indeed, a multitude of multitudes) of de-
fined parameter objects. The propagation code of each ap-
plication wrapper is to act as a filter upon the variety of pa-
rameters it sees; those that make some sense are processed
(in some way) while those that bear no relevance are simply
ignored as they pass by.

Even this process, though, has its vagaries. A code seeing
and consuming, say, a local gas kinematic viscosity located
at a position that seems relevant still has no absolute as-
surance that this local gas kinematic viscosity is the local
gas kinematic viscosity that is needed. It is first up to the
designer of the application graph to assure (to the extent
possible) that encountered information is, in fact, relevant
information. Such tricks as may be played with a directed
graph may be needed to keep one node from encountering
information that is not relevant to it.

Applications may also wish to implement in the propaga-
tion coding a sensitivity to information proximity, perhaps
presuming that information nearer to it in the application
graph is more relevant to it. This is why the depth-first
order was selected for the traversal of the application prop-
agation source set. This allows a receiving application to
encounter nearer information first, giving the potential that
such consumed information can ‘blank off’ in an inheri-
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tance manner more remote information. Consider, for ex-
ample, an application graph that first applies an Eulerian
potential flow solver to a flow field, refines that answer
with a Navier-Stokes solver, and then passes that result on
to some further consumer. If appropriately programmed,
the receiving code can consume the Navier-Stokes solution
and, by so doing, ‘blank off’ the presumably less useful
potential flow solution.

All of this runs the risk of making application wrappers
that are too situation specific. Continuing the above ex-
ample, the temptation is to develop an application wrapper
that expects always to have a Navier-Stokes solution flow-
ing from a potential flow solution. Such temptations must
be resisted and the delicate art of working in response to
what comes to hand, rather than in an expectation of what
will be found, must be developed and practiced.

Another contribution of parameter objects to the informa-
tion propagation process may be that some objects may of-
fer their content in a variety of useful forms. Information
in parameter objects is to be generic and closely defined
in a semantic sense. To be useful to all applications, PIA
parameters must not be taylored in their content or organi-
zation to the needs of any one particular application. But
this does not mean that only one accessible view of that in-
formation is permitted to exist. It is entirely reasonable that
the parameter object be the place in which alternate modes
of access serving diverse needs are encapsulated.

Consider a parameter encapsulating a computational fluid
flow grid. In its simplest conceptualization, such a grid is
an ordered set of n-tuples specifying computational node
locations and state variables in m-dimensional space. As
independent work has demonstrated, while this is the es-
sense of such a grid, only a fraction of the computational
fluids codes operate with a grid structured in this manner.
Some codes insert skip rows, skip columns, or skip planes
in their grid organizations. Other codes circularize the set
so that element n maps back to element 0. Some codes
even change the handedness, operating not in the custom-
ary right-handed orientation, but in a left-handed one. As
that independent work has shown, all such variations can be
well and effectively accommodated by variant access views
operating on a single internal formulation.

2.5 Documenting the Flow of Information

The final, small contribution of PIA information propaga-
tion is to provide for the documenting of information flow.
One of the myriad goals of the project was not only to have
all the configurations of a given problem that were con-

sidered, but to produce an audit trail that could reveal just
exactly where a given configuration came from.

All parameter objects of the PIA environment (and, indeed,
very nearly all objects of every sort in that environment)
derive from a base class with the characteristic of describa-
bility. One of the descriptive forms that may be added to an
object’s description is a change history, and, with the de-
velopment of the information propagation capability, one
of the elements of such a change history may be an infor-
mation propagation record.

The information propagation descriptive element is a rea-
sonably simple thing. It provides a traversable set of
parameter configuration/identification object pairs, each
of which, within the application wrapper architecture,
uniquely identify a source parameter used in the synthesis
of the described parameter. The provision of a set of such
pairs is intended to allow for the operation of source aggre-
gates (discussed above) in which several source parameter
objects, possibly harvested from different applications, are
combined to produce a single parameter needed by the re-
ceiving application.

3 When All Does Not Go Well

The discussion thus far has, of course, dealt in that rose-
colored world in which all goes well all of the time.
Those with more accurate powers of observation (some-
times called cynics) will point out that this is not always
the true nature of engineering and scientific analysis. One
might debate the advisability of introducing analyses still
in the crash-and-burn phase of program development into
the postulated world of automated, multi-fidelity, multi-
discipline evaluation. Nevertheless, it is prudent to provide
for the exceptional event, even though one hopes that such
things will be, well, exceptional.

The PIA project does, in a preliminary way, provide for
such operational difficulties, but such discussion has been
held to this point in order to reduce the complication of
the earlier discussion. There are, in fact, just two key ele-
ments: the notation of parameter configurations in which a
malfunction of some sort has occurred, and the provision of
an event mechanism which transmits to some independent
(though in important ways undefined) authority knowledge
of the occurrence and solicits from that authority one of
several well-defined responses.

NASA/TM—2005-213613 7



3.1 The Origin of Difficulties

The discussion begins with the presupposed originator of
such difficulties: the computational operation which con-
verts inputs to outputs for a given application. Within the
PIA implementation, this process returns a simple, boolean
result: success or failure. Should a failure occur, it is han-
dled in the context of the parameter configuration object
within which the computation was performed by invoking
a malfunction event facility built into the base class of ap-
plication objects.

The malfunction event facility works in the hope, if not the
expectation, of event mechanism objects being connected
to the parameter configuration object. A malfunction event
is passed to each such found event object and the response
noted. In the event of multiple event objects (giving multi-
ple responses), a simple algorithm merges the responses, in
general elevating the composite response to the most dire of
the individual responses. In the event that there are no con-
nected event objects, a ‘no response’ response is defined
and is the base value from which the malfunction event
mechanism begins.

These event objects, as implemented by the basic archi-
tecture, in fact do nothing. They provide form without
function. It is left to the operating environment hosting the
application graph to provide a derived event object which
adds substance to this form. It is in this way that the na-
ture of the independent authority is left undefined. The
actual event object may lead to a pop-up dialog in a GUI
environment for the user to click at, or it may email some-
body at home someplace and wait for a responding mes-
sage. Nearly any conceivable thing can be laid over this
basic skeletal event idea.

3.2 Handling a Decision

Once some response (including the ‘no response’ response)
is obtained in answer to the computational malfunction,
three potential handlings are implemented: the malfunc-
tion may be ignored, the computation may be retried, or
the malfunction may be accepted and operations continued
to whatever extent possible. The first two choices are sim-
pler. They either stipulate that, despite appearances to the
contrary, everything is, in fact, all right, or that maybe if
tried again (perhaps after some corrective action that has
occurred in the course of event response), everything will
become all right. In either of these cases, the parameter
configuration does not receive the malfunctioning charac-
teristic.

In the third choice, that of accepting the unsuccessful op-
eration, the outlying mechanisms of malfunction begin to
operate. To begin, the presenting parameter configuration
object is given the malfunctioning characteristic. This char-
acteristic is regarded as casting a shadow of doubt upon any
parameter of the configuration that has the output charac-
teristic. (Within PIA, parameters may have either an input
or output characteristic, or both, or neither.) Such parame-
ters of malfunctioning configurations are often referred to
as untrusted.

Within the context of information propagation, the failure
of a single computation alone is not considered sufficient
grounds for complete abandonment of the overall opera-
tion (although this selection is an option). Such a failure
may well be an isolated problem of a particular configura-
tion of parameters in a larger propagation process that is
progressing meaningfully.

3.3 Dealing with Difficulty

The next challenge is to persevere in the face of such mal-
functions. This is begun simply by not breaking the in-
formation propagation process. Then, as the process con-
tinues, it is usually appropriate to avoid the dependence of
further operations upon untrusted parameters, and to note
those further application/configuration instances to which
such untrusted parameters may have transmitted informa-
tion.

To this end, the parameter-by-parameter operation screens
for parameters with the output characteristic that actually
exist in a configuration with the malfunction characteristic.
By default, parameters meeting this criteria are not trans-
mitted to the parameter propagation code; however, this
screening may be turned off. Without regard to that choice,
though, the occurrence in the parameter-by-parameter pro-
cess of any such untrusted parameter causes the receiv-
ing configuration to obtain the malfunctioning characteris-
tic. Thus, a malfunction propagates through the application
graph even though receiving applications have no particular
fault of their own.

The justification for this aggressive propagation of the mal-
function characteristic is this: to be conservatively clear as
to just where an untrusted result reaches. To understand
the reasoning, consider the alternative: the propagation of
the malfunction characteristic might have been limited to
just those configurations that actually used an untrusted
parameter. Then, by electing to screen out such parame-
ters (which is the default), a receiving configuration would
avoid dependence on dubious results and inhibit the prop-
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agation of the malfunction characteristic. While this might
appear desireable, the difficulty lies in the fact that the
configuration would then (probably) inherit corresponding
trusted parameters from its ancestral line, or from the an-
cestral line of its propagation source configurations. This,
in turn, would constitute a corruption of the configuration
tree requirement since the trusted parameters used for the
propagating analysis would not necessarily be those appro-
priate for the malfunctioning configuration. Thus, it is nec-
essary to make the conservative choice of propagating the
malfunction characteristic to any configuration that would
have used an untrusted parameter had that parameter not
been untrusted.

3.4 Not Making More Troubles

Having propagated the malfunction characteristic on to a
receiving parameter configuration, the next step is to un-
derstand that it should be customary to avoid the compu-
tational conversion of inputs to outputs when that charac-
teristic has, in fact, propagated to the application. The rea-
soning here is that the act of information propagation is for
the purpose of obtaining at least some of the inputs to a re-
ceiving application. If those inputs are untrusted (because
their sources were untrusted), or if they are missing (even
though alternative inputs might be inherited from an ances-
tral configuration), it is probably unwise to expend the ef-
fort of converting erroneous inputs to even more erroneous
outputs.

The avoidance of computation need not be an unexcepted
rule. The introduction of the semantics of a real application
provides the opportunity to qualify the relevance of partic-
ular untrusted parameters. The application graph is not a
perfect device and may often present parameters, untrusted
though they may be, of no relevance whatsoever to a par-
ticular receiving application. Thus, a particular application
may wish to keep its own accounting of untrusted parame-
ters and make its own assessment of its malfunction state.
In the event that the parameters that were significant were,
in fact, also good, then it is entirely appropriate for an ap-
plication to perform the defined computation and reset the
malfunction characteristic of the configuration. In this way,
a malfunction need not propagate to every application of
the graph reachable from the malfunction’s point of origin.

4 Summary

This paper has discussed the mechanisms and protocols im-
plemented by the PIA project to effect information propa-

gation between engineering analyses cooperating to form
an overall analysis of a given project. The effort at the
generic base level is principally one of bookkeeping; par-
ticulars must always await the semantics of a specific appli-
cation. Benefits beyond enabling such composite analyses
include the assured synchronization of project configura-
tion among analyses, the ability to synthesize a particular
parameter from an source aggregate, and the generation of
an auditable trail for the propagated information.

The key contribution of the effort, in the event that it works
meaningfully, is that it will allow a wide variety of dis-
parate analyses to be brought together into a sort of su-
per application, regardless of discipline or fidelity. Further
than this is the fact that such super applications are easily
reconfigurable simply by reformulating instances of their
component application wrappers into a different directed
application graph.
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